Goldwyn Plus - Mathematics

Subject Statement and Long Term Plan

Mathematics - Statement of Intent

"Every problem has a solution"

Intent

Our intent is to encourage all students to build on their knowledge and explore all areas of mathematics. Students are encouraged to physically represent mathematical concepts. Objects and pictures are used to demonstrate and visualise abstract ideas, alongside numbers and symbols. Mathematical concepts are explored in a variety of representations and problem-solving contexts to give pupils a richer and deeper learning experience. This has three stages fluency, reasoning and leads to problem solving. Becoming fluent in the fundamentals of mathematics, including through varied and frequent practice, so that pupils develop conceptual understanding and recall and apply knowledge. Reasoning mathematically by following a line of enquiry, conjecturing relationships and generalisations, and using mathematical language. Problem solving is applying their mathematics to a variety of routine and non-routine problems

Students are encouraged to identify, understand and apply relevant mathematical principles and make connections between different ideas. This builds the skills needed to tackle new problems, rather than simply repeating routines without grasping the principles. All learners benefit from deepening their conceptual understanding of mathematics, regardless of whether they've previously struggled or excelled. We believe students must be given time to fully understand, explore and apply ideas - rather than accelerate through new topics. This approach enables learners to truly grasp a concept, and the challenge comes from investigating it in new, alternative and more complex ways.

Implementation

The curriculum is sequenced by topics which build, link and expand on previous knowledge. Each student starts the topic at a suitable point for them anywhere from the Key stage 1, Key stage 2, Key stage 3 and GCSE learning objective regardless of their year group. Each topic follows a rubric where students can identify the aspect they are working on and what they are working towards. Students can start anywhere on the rubric based on their strengths spending as long as needed to make sure they have embedded the skills and concepts needed before moving on. We start each lesson focusing on timetables or number skills to ensure these are fluent. Lessons are taught as a range of 1:1 and mixed age and ability groups. These group vary each lesson and the amount of lessons is dependent on the student bespoke learning programme.

Impact

Students will be curious and resilient learners. Students will be able to take functional skills Edexcel awards in number and measure, statistics Algebra and a GCSE in mathematics. As well as formal examinations students will have the skills and knowledge to be able to know when and how to use maths in their everyday lives. Students will use their mathematical knowledge across the curriculum.

Mathematics Department: Long Term Plan

The Mathematics Long Term Plan reflects a key focus upon fluency, reasoning and problem-solving skills across the curriculum. It is anticipated that all pupils will have the opportunity to study for a formal qualification in Mathematics which addresses their needs, including AQA Awards, Entry level Certificates and GCSE examinations. The Curriculum Plan has a clear sequence centred upon both prior learning and expectations for future learning. Students work based on a key stage to suit them anywhere from KS1, KS2 KS3 upwards. It is hoped that this work provides the foundation for further progress through Key Stage 4.

Term	1	2	3	4	5	6
KS3	Number and place value Addition and subtraction Multiplication and division Key learning: - Understand and use place value - Order positive integers - Apply the four operations, including formal written methods, to integers - Recognise and use relationships between operations - Use the concepts and	Fractions decimals and percentages Key learning: - To order and compare fractions, decimals and percentages using the correct symbol - To recognize fractions or shapes, objects or quantitates - To recognise equivalent fractions - To simplify fractions - To recognise and convert improper fractions and mixed number - To use the four operations with	Measurements Key learning: - multiply and divide whole numbers and those involving decimals by 10 , 100 and 1000 - measure, compare, add and subtract: lengths ($\mathrm{m} / \mathrm{cm} / \mathrm{mm}$); mass (kg/g); volume/capacity ($1 / \mathrm{ml}$) tell and write the time from an analogue clock, including using Roman numerals from I to XII, and 12-hour and 24-hour clocks	Shapes - 2D and 3D Key learning: - draw 2-D shapes and make 3-D shapes using modelling materials; recognise 3-D shapes in different orientations and describe them - recognise angles as a property of shape or a description of a turn - compare and classify geometric shapes, including quadrilaterals and triangles, based on their properties and sizes - identify acute and obtuse	Geometry - positions, directions, transformations Key learning: - Describing positions and movements such as clock wise and anti-clock wise including degrees - To recognise lines of symmetry, rotational symmetry - to reflect, translate and rotate a shape in four quadrants - Use co-ordinates	Statistics Key learning: - interpret, construct and compare tally charts, pictograms, bar charts, line graphs, pie chart, timetables and tables. To calculate the mean, median mode and range in set of data

	vocabulary of prime numbers, factors (divisors) and multiples	fractions - read and write fraction, decimals and percentages as each other - recognise and use 3 DP - round decimals - read, write, order and compare numbers with up to three decimal places - To recognise per cent is out of 100 . - To find a percentage of a number.		angles and compare and order angles up to two right angles by size - identify lines of symmetry in 2-D shapes presented in different orientations - Be able to measure and calculate the area and perimeter of regular and irregular shapes		
$\begin{aligned} & \text { Year } \\ & 10 \end{aligned}$	Number properties Decimals Negative numbers Units Accuracy and rounding BIDMAS Indices and standard form Key learning: - As KS3 - order positive and negative integers - apply the four operations, including formal	Fractions, decimas Percentages Ratio and proportion Key learning: - As KS3 - Four operations with fractions - To calculate increase and decreases - Work with percentage larger than 100\% - To calculate original value, simple and compound interest	2D shape properties Perimeter and area Circles 3D Shapes Volume and surface area Plans and elevations Key learning: - use conventional terms and notations: points, lines, vertices, edges, planes, parallel lines, perpendicular	Angles Pythagoras Transformations and vectors Key learning: - use conventional terms and notations: points, lines, vertices, edges, planes, parallel lines, perpendicular lines, right angles, polygons, regular polygons and polygons with	Algebraic expressions, equation, formula and sequences Inequalities Simultaneous equations Key learning: - use and interpret algebraic notation, including: - $\quad a b$ in place of $a+b$ - $3 y$ in place of $3 x y$ - a^{2} in place of $a \times a$, a^{3} in place of $a \times a \times a, a^{2} b$ in place of $a \times a \times b$ - ${ }^{\text {a }}$ in place of $a \div b$	Statistical representation Collecting data Averages Graphs and Scatter graphs Key learning: - interpret and construct - frequency tables - bar charts - pie charts - pictograms - pie charts - interpret and

written methods, to
integers, both
positive and
negative

- Use BIDMAS
- use the
concepts and vocabulary of highest common factor, lowest common multiple, prime factorisation, including using product notation and the unique factorisation theorem
- calculate with roots, and with integer indices
- calculate with and interpret standard form A x 10n, where $1 \leq$ $A<10$ and
n is an
integer.
- order positive and negative decimals
- use the symbols =,
$\neq,<,>, \leq, \geq$
- apply the four operations, including formal written methods, to integers, decimals and simple fractions (proper and improper), and mixed numbers all both positive and negative; understand and use place value
- recognise and use relationships between operations
- use ratio notation, including reduction to simplest form
- express a multiplicative relationship between two quantities as a ratio
- understand and use proportion as equality of ratios
- relate ratios to
lines, right angles, polygons, regular polygons and polygons with reflection and/or rotation symmetries; use the standard conventions for labelling and referring to the sides and angles of triangles; draw diagrams from written description derive and apply the properties and definitions of special types of quadrilaterals, including square, rectangle, parallelogram, trapezium, kite and rhombus; and triangles and other plane figures using appropriate language use the basic congruence criteria for triangles (SSS, SAS, ASA, RHS)
identify and apply circle definitions and properties, including: centre, radius, chord, diameter,
reflection and/or rotation symmetries;
- use the standard conventions for labelling and referring to the sides and angles of triangles; draw diagrams from written description
- apply the properties of angles at a point, angles at a point on a straight line, vertically opposite angles;
- understand and use alternate and corresponding angles on parallel lines;
- derive and use the sum of angles in a triangle (e.g. to deduce use the angle sum in any polygon, and to derive properties of regular polygons)
- know the formulae for: Pythagoras' theorem, $a^{2}+b^{2}=$
- coefficients fractions rather than decimals
- brackets
- Simplify and manipulate algebraic expressions by:
- Collecting like terms
- Multiplying a single term over a bracket
- Taking out common factors
- Expanding products of two or more binomials
- Factorising quadratic expressions of the form $x^{2}+b x+c$, including the difference of two squares
- Simplifying expressions involving sums, products and powers, including the laws of indices
construct vertical line charts and tables and line graphs for time series data
- Infer properties of populations or distributions from a sample, whilst knowing the limitations of sampling.
- apply statistics to describe a population
- Interpret, analyse and compare the distributions of data setsfrom univariate empirical distributions through appropriate graphical representation involving discrete, continuous and groupeddata.
- interpret, analyse and compare the distributions of data sets from univariate empirical distributions through:

					solutions to quadratic equations using a graph - solve two simultaneous equations in two variables algebraically; - find approximate solutions to simultaneous equations in two variables using a graph - translate simple situations or procedures into algebraic expressions or formulae; derive an equation (or two simultaneous equations), solve the equation(s) and interpret the solution. - solve linear inequalities in one variable - represent the solution set on a number line, - generate terms	

					of a sequence from either a term-to-term or a position-to-term rule - recognise and use sequences of triangular, square andcube numbers, simple arithmetic progressions, Fibonacci type sequences, quadratic sequences, and simple geometric progressions (rn where n is an integer, and r is a rational number >0 or a surd) and other sequences	
Year 11	Recap year 10 Probability Key learning: - record describe and analyse the frequency of outcomes of probability experiments using tables and frequency trees - apply ideas	Recap year 10 Compound measures Key learning: - use standard units of mass, length, time, money and other measures (including standard compound measures) using	Recap year 10 Trigonometry Key learning: - know the trigonometric ratios - apply them to find angles and lengths in right-angled triangles - Know the exact values of $\operatorname{Sin} \theta$, $\operatorname{Cos} \theta$ and $\operatorname{Tan} \theta$	Recap year 10 Constructions Key learning: - use the standard conventions for labelling and referring to the sides and angles of triangles; draw diagrams from written description - use the standard	Revision, gap filling, Examinations	Recap year 10 Probability Key learning: - record describe and analyse the frequency of outcomes of probability experiments using tables and frequency trees - apply ideas

	experiments with equally likely outcomes and use these to calculate theoretical probabilities - calculate the probability of independen t and dependent combined events, including using tree diagrams and other representati ons, and know the underlying assumptions					theoretical probabilities - calculate the probability of independent and dependent combined events, including using tree diagrams and other representatio ns, and know the underlying assumptions

HIGHER CONTENT will be included for individual students if required.
A student may start on this long term plan at a stage which does not match their current year group due to their needs.

